Skip to content
November 26, 2014 / porton

I’ve proved one more conjecture

I’ve proved yet one conjecture.

The proof is presented in this online article.

Theorem For every funcoid f and filters \mathcal{X}\in\mathfrak{F}(\mathrm{Src}\,f), \mathcal{Y}\in\mathfrak{F}(\mathrm{Dst}\,f):

  1. \mathcal{X} \mathrel{[(\mathsf{FCD}) f]} \mathcal{Y}      \Leftrightarrow \forall F \in \mathrm{up}^{\Gamma (\mathrm{Src}\, f ; \mathrm{Dst}\,      f)} f : \mathcal{X} \mathrel{[F]} \mathcal{Y};
  2. \langle (\mathsf{FCD}) f \rangle \mathcal{X} = \bigsqcap_{F      \in \mathrm{up}^{\Gamma (\mathrm{Src}\, f ; \mathrm{Dst}\, f)} f} \langle F \rangle      \mathcal{X}.
Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: