Skip to content
November 1, 2013 / porton

Some new minor results

I’ve proved:

\bigsqcap \langle \mathcal{A} \times^{\mathsf{RLD}} \rangle T =  \mathcal{A} \times^{\mathsf{RLD}} \bigsqcap T if \mathcal{A} is a filter and T is a set of filters with common base.

\bigsqcup \left\{ \mathcal{A} \times^{\mathsf{RLD}} \mathcal{B}  \hspace{1em} | \hspace{1em} \mathcal{B} \in T \right\} \neq \mathcal{A}  \times^{\mathsf{RLD}} \bigsqcup T for some filter T and set of filters T (with a common base).

See preprint of my book.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: