Skip to content
April 20, 2013 / porton

Definition of subatomic projection of funcoids

I have proved that for every funcoid f:\prod A\rightarrow\prod B (where A and B are indexed families of sets) there exists a funcoid \mathrm{Pr}^{(A)}_k f (subatomic projection) defined by the formula:

\mathcal{X} \mathrel{\left[ \Pr^{\left( A \right)}_k f \right]} \mathcal{Y}     \Leftrightarrow \\  \prod^{\mathsf{RLD}}_{i \in \mathrm{dom}\, A}     \left( \left\{ \begin{array}{ll}       1^{\mathfrak{F} \left( A_i \right)} & \mathrm{if}\,       i \neq k ;\\       \mathcal{X} & \mathrm{if}\, i = k     \end{array} \right. \right) \mathrel{\left[ f \right]}     \prod^{\mathsf{RLD}}_{i \in \mathrm{dom}\, B} \left( \left\{     \begin{array}{ll}       1^{\mathfrak{F} \left( B_i \right)} & \mathrm{if}\,       i \neq k ;\\       \mathcal{Y} & \mathrm{if}\, i = k     \end{array} \right. \right) .

My draft book is modified to include this new theorem.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: