Skip to content
March 30, 2011 / porton

Two elementary theorems

I proved the following two elementary but useful theorems:

Theorem For every funcoids f, g:

  1. If \mathrm{im}\, f \supseteq \mathrm{im}\, g then \mathrm{im}\, (g\circ f) = \mathrm{im}\, g.
  2. If \mathrm{im}\, f \subseteq \mathrm{im}\, g then \mathrm{dom}\, (g\circ f) = \mathrm{dom}\, g.

Theorem For every reloids f, g:

  1. If \mathrm{im}\, f \supseteq \mathrm{im}\, g then \mathrm{im}\, (g\circ f) = \mathrm{im}\, g.
  2. If \mathrm{im}\, f \subseteq \mathrm{im}\, g then \mathrm{dom}\, (g\circ f) = \mathrm{dom}\, g.

See this Web page and especially this online article.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: